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Abstract

In this paper we continue the study of bi-conformal vector fields started in [A. Garcı́a-Parrado, J.M.M.
Senovilla, Class. Quant. Grav. 21 (2004) 2153–2177]. These are vector fields defined on a pseudo-Riemannian
manifold by the differential conditions £�ξ Pab = φPab, £�ξ Πab = χΠab, where Pab, Πab are orthogonal and
complementary projectors with respect to the metric tensor gab. In a previous paper we explained how the
analysis of these differential conditions enabled us to derive local geometric characterizations of the most
relevant cases of conformally separable (also called double twisted) pseudo-Riemannian manifolds. In this
paper we carry on this analysis further and provide local invariant characterizations of conformally separable
pseudo-Riemannian manifolds with conformally flat leaf metrics. These characterizations are rather similar
to that existing for conformally flat pseudo-Riemannian manifolds but instead of the Weyl tensor, we must
demand the vanishing of certain four rank tensors constructed from the curvature of an affine, non-metric,
connection (bi-conformal connection). We also speculate with possible applications to finding results for
the existence of foliations by conformally flat hypersurfaces in any pseudo-Riemannian manifold.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most interesting problems faced in Differential Geometry is the invariant character-
ization of pseudo-Riemannian manifolds. The most famous exposition about this issue was stated
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by Klein in his Erlangen program [11] where he set about to the ambitious task of classifying all
the possible geometries be they underlay by a pseudo-Riemannian manifold or not.

If we stick to pseudo-Riemannian manifolds then the invariant characterizations are usually
achieved by means of the definition of intrinsic (coordinate independent) geometric objects upon
which a condition is imposed. The best known examples are flat and conformally flat pseudo-
Riemannian manifolds which are those such that the Riemann tensor and the Weyl tensor are
zero, respectively. Other relevant cases found in the framework of General Relativity are the
Schwarzschild geometry [6], Kerr black hole [16,12], plane fronted waves with parallel rays and
many others which are invariantly characterized by certain geometric conditions.

Symmetry considerations often play an important role in invariant characterizations (in fact
they lie at the heart of the Erlangen program). They come in the form of concrete Lie groups
acting on the manifold under study (group realizations) and by knowing the orbits or the isotropy
subgroups of such actions it is possible sometimes to identify the pseudo-Riemannian manifold.

The above description of symmetries is performed in terms of finite groups but we can also
study the infinitesimal generators of these symmetry groups. These are vector fields satisfying
certain differential conditions which in general involve the Lie derivative. For instance in the case
of isometries and conformal transformations the corresponding differential conditions fulfilled
by the infinitesimal generators are

£�ξ gab = 0 (isometries), £�ξ gab = 2φgab (conformal motions), (1)

where φ is a smooth function. There are other examples of symmetries studied in the literature
(see e.g. [10,7,17]) all of them involving the basic objects in Differential Geometry (Levi–Civita
connection, Riemann curvature, Ricci tensor, etc.). However, not many examples have been tackled
with more general differential conditions (some of them can be found in [9,1,18]). In any case from
the study of the differential conditions satisfied by the vector fields generating the symmetry we can
sometimes get the geometric conditions fulfilled by the pseudo-Riemannian manifolds admitting
the symmetry under study and these conditions are precisely the geometric characterizations
alluded to above.

In all the cases we are aware of, the differential conditions are linear in the generating vector
fields and one can show that these vector fields are (local) Lie algebras. If such Lie algebras are
finite-dimensional then it is possible to derive from the differential conditions the normal form
which generically looks like

DxaΦB = f (x1, . . . , xn, Φ1, . . . , Φm),

where {x1, . . . , xn} are local coordinates, Dxa , a = 1, . . . n a differential operator and Φ1, . . . , Φm

a set of variables called the system variables. Particularly interesting is the study of the first in-
tegrability and complete integrability conditions associated to the normal form because they are
the geometric conditions under which a pseudo-Riemannian manifold admits locally a finite-
dimensional Lie algebra of infinitesimal generators with the highest possible dimension. For
instance a n-dimensional locally conformally flat pseudo-Riemannian manifold with a C2 con-
formal factor can be characterized by the existence of a local Lie algebra of conformal motions
of dimension (n + 1)(n + 2)/2 and the complete integrability conditions computed from (1) are
just the vanishing of the Weyl tensor (n > 3) in a neighbourhood of a point. Therefore from the
sole symmetry considerations one can obtain important geometric objects and this is one of our
aims in this paper where we carry out the calculation of the first and the complete integrability
conditions for the case of bi-conformal vector fields (see next).
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In [3] a new symmetry transformation called bi-conformal transformation was put forward.
The infinitesimal generators of such transformations are called bi-conformal vector fields and
they are defined through the differential conditions

£�ξ Pab = φPab, £�ξ Πab = χΠab,

where Pab and Πab are orthogonal and complementary projectors with respect to the metric gab.
This study was improved in [2] where we obtained a simple expression of the normal form associ-
ated to the above conditions and obtained invariant, coordinate free, characterizations of the most
relevant cases of conformally separable pseudo-Riemannian manifolds (we will quote this paper
very often in this work and so it will be referred to as paper I). A pseudo-Riemannian manifold is
conformally separable at a point q if there exist a local coordinate chart x = {x1, . . . , xn} based
at q such that the metric tensor takes the form

ds2 = Ξ1(x)Gαβ dxα dxβ + Ξ2(x)GAB dxA dxB, 1 ≤ α, β ≤ p, 1 ≤ A, B ≤ n − p,

(2)

where the functions Gαβ, GAB only depend on the coordinates labelled by their respective
subindexes (see Definition 10). The metrics Ξ1(x)Gαβ, Ξ2(x)GAB are called leaf metrics of
the separation. If Gαβ, GAB are flat metrics then the manifold is bi-conformally flat at q.

This paper is the continuation of the work started in paper I. There we introduced a new affine
connection (bi-conformal connection) and explained how its use allows us to obtain relevant
geometric information out of the study bi-conformal vector fields. In concrete terms we showed
that a pseudo-Riemannian manifold is conformally separable at a point if and only if a certain
rank 3 tensor Tabc constructed from a pair of orthogonal and complementary projectors is zero in
a neighbourhood of that point. These projectors are naturally identified with the leaf metrics (see
Section 5 for more details about this identification). In this work a local geometric characterization
for bi-conformally flat spaces in terms of a certain tensor T a

bcd constructed also from the projectors
Pab and Πab is derived. We prove the remarkable result that both Tabc, T a

bcd are zero if and only
if the space is bi-conformally flat at a point being Pab and Πab the leaf metrics.1 This is the
translation to the bi-conformal case of the familiar condition that the Weyl tensor vanish for
a pseudo-Riemannian manifold to be locally conformally flat. The aforementioned conditions
will be encountered here as the complete integrability conditions associated to the differential
conditions defining a bi-conformal vector field. We can also give geometric conditions under
which a conformally separable pseudo-Riemannian manifold admits conformally flat leaf metrics.
These conditions take the form

Pa
rPb

sPc
qPd

tT r
sqt = 0.

One of the most remarkable advantages of these characterizations is that they enable us to define
intrinsically when a pseudo-Riemannian manifold is conformally separable and bi-conformally
flat at a point. Furthermore we can test if two given orthogonal and complementary projectors
Pab, Πab give rise to a conformally separable pseudo-Riemannian manifold with conformally flat
leaf metrics without actually finding the adapted local coordinates of (2).

The paper outline is as follows: in Section 2 we recall basic issues of paper I used in this
work (the paper is self-contained and there is no need of reading paper I to understand the

1 If any of the projectors have algebraic rank 3 then the conditions are slightly different.
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results presented here). After this the paper is divided into two differenced parts: in the first
one comprised by Sections 3 and 4 we have put all the issues dealing strictly with bi-conformal
vector fields being these the first and the complete integrability conditions, respectively. In the
second part we show how these conditions can be used to characterize locally bi-conformally flat
pseudo-Riemannian manifolds and conformally separable pseudo-Riemannian manifolds with
conformally flat foliations (Section 5). These results are gathered by Theorems 11 and 13 (the
special case of any of the leaf metrics being of rank 3 is treated in Theorem 14). A reader only
interested in these geometric characterizations should jump straight to this section and skip the
long tensor calculations of Sections 3 and 4. Finally examples are provided in Section 6.

Part of the results presented in this paper relies on hefty tensor calculations. These calculations
have been done by hand and double-checked with the newly released Mathematica package
“xtensor” [13] with excellent agreement.

1.1. Notation conventions

The notation of the paper is standard. We work in aC∞ connected pseudo-Riemannian manifold
V with metric tensor gab and we use index notation for all objects constructed from the tensor
bundles T r

s (V ) of V. Square brackets enclosing indexes are used to denote antisymmetrization and
whenever a set of indexes is between strokes it is excluded from the antisymmetrization operation.
The metric tensor gives rise to the Levi–Civita connection γa

bc (we reserve the nomenclature Γ a
bc

for the connection components calculated in a natural basis) and the curvature tensor Ra
bcd , being

our convention for the relation between these two

Ra
bcd ≡ ∂cΓ

a
db − ∂dΓ

a
cb + Γ a

rcΓ
r
db − Γ a

rdΓ
r
cb. (3)

Under this convention the Ricci identity becomes

∇b∇cu
a − ∇c∇bu

a = Ra
rbcu

r, ∇b∇cua − ∇c∇bua = −Rr
abcur,

where ∇a is the covariant derivative of the Levi–Civita connection.
All the above relations are still valid if γa

bc is a connection with no torsion (symmetric or
affine connection).

The infinite-dimensional Lie algebra of smooth vector fields of the manifold V is denoted by
X(V ). Finally the Lie derivative operator with respect to a vector field �ξ is £�ξ .

2. Preliminaries

In this section we review concepts of paper I which are needed in this work. We quote the
results without proofs as they can all be found in paper I.

Definition 1. A smooth vector field �ξ on V is said to be a bi-conformal vector field if it fulfills
the condition

£�ξ Pab = φPab, £�ξ Πab = χΠab, φ, χ ∈ C∞(V ), (4)

where Pab, Πab are smooth sections of the tensor bundle T 0
2 (V ) satisfying the properties

Pab = Pba, Πab = Πba, Pab + Πab = gab, PapPp
b = Pab,

ΠapΠp
b = Πab, PapΠp

b = 0. (5)
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The geometrical meaning of these conditions is that Pab and Πab are orthogonal projectors with
respect to the metric tensor gab at each point of the manifold. We describe next briefly some
useful properties of Pab and Πab which will be used along the paper. To start with note that we
can decompose the vector space Tp(V ) as a direct sum of the ranges of the endomorphisms Pa

b

and Πa
b. These ranges are the respective eigenspaces of the endomorphisms with eigenvalue +1

and they are orthogonal subspaces. Pab and Πab enable us to represent any nondegenerate smooth
distribution D in a compact way.2 To see this more clearly, let {ua

1, . . . , u
a
p}, 0 < p < n, be an

orthonormal set of smooth vector fields spanning the distribution D (such a set always exists if D
is nondegenerate) with εα = ua

αgabu
b
α. Then the smooth sections

Pab ≡
p∑

α=1

εαuα
auα

b, Πab ≡ gab − Pab, (6)

satisfy (5). Conversely, the smoothness of Pa
b and Πa

b together with (5) guarantee that the
ranges of Pa

b and Πa
b span smooth distributions on V. To see this we need to show that the

range dimension of each projector does not vary in the manifold V (these numbers are p ≡ Pa
a

and n − p ≡ Πa
a) because in that case such ranges are smooth distributions (see e.g. [8]). Let us

split3 V in subsets Ak, Bk′k, k′ = 1, . . . , n − 1 defined by the conditions

Ak = {q ∈ V : Pa
a = k}, Bk′ = {q ∈ V : Πa

a = k′},
and denote by kmin and kmax, respectively, the minimum and maximum value of the integer k
(similarly we define k′

min, k′
max). By the rank theorem (see e.g. Theorem 3.1 of [7]) Akmax and

Bk′
max

are open sets and from the third property of (5) clearly Akmax = Bk′
min

, Bk′
max

= Akmin . On
the other hand using again the rank theorem we deduce that V \ Bk′

min
, V \ Akmin are open and

thus Bk′
min

and Akmin must be closed from which we conclude that Akmax , Bk′
max

are both open and
closed at the same time and thus equal to V since it is connected.

The differential conditions (4) are the starting point for an interesting study of the properties
and geometric significance of bi-conformal vector fields. In paper I we argued that the set of
bi-conformal vector fields of a pseudo-Riemannian manifold V is a Lie subalgebra of X(V ) and
we established the conditions under which such algebra is always finite-dimensional as well as
its greatest dimension N. The Lie algebra is finite-dimensional if p, n − p �= 1, 2 and in this case

N = 1
2 (p + 1)(p + 2) + 1

2 (n − p + 1)(n − p + 2).

The number N is calculated from the normal form associated with the differential conditions
(4). This is a set of equations obtained from the differential conditions by means of successive
differentiations and they were calculated in paper I (here, this normal form is recalled in (8)). In
doing this calculation the introduction of a new affine connection (bi-conformal connection) re-
vealed itself essential rendering the normal form very neatly. The components of the bi-conformal
connection γ̄a

bc are related to the Levi–Civita connection γa
bc by the relation

γ̄a
bc = γa

bc + 1

2p
(EbP

a
c + EcP

a
b) + 1

2(n − p)
(WbΠ

a
c + WcΠ

a
b)

+ 1

2
(Pa

p − Πa
p)Mp

bc,

2 By nondegenerate we mean that the scalar product gab restricted to the subspace of Tp(V ) generated by the distribution
D is not degenerated.

3 We are indebted to Graham Hall for this proof.
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where

Mabc ≡ ∇bPac + ∇cPab − ∇aPbc, Ea ≡ MabcP
bc, Wa ≡ −MabcΠ

bc. (7)

By definition the bi-conformal connection is an affine connection and we shall denote the covariant
derivative and the curvature tensor of this connection by ∇̄ and R̄a

bcd , respectively. The bi-
conformal connection does not stem from a metric tensor in general as will be shown in explicit
examples and hence the tensor R̄a

bcd does not fulfill the same properties as the curvature tensor of
a metric connection. The Bianchi identities though, remain as in the case of a metric connection.

In paper I, we explained the role of the bi-conformal connection in the local geometric char-
acterization of conformally separable pseudo-Riemannian manifolds (see Definition 10). This
role will be strengthened in Section 5 where we will develop a local invariant characterization
of conformally separable pseudo-Riemannian manifolds with conformally flat leaf metrics (bi-
conformally flat pseudo-Riemannian manifolds).

3. First integrability conditions

As we commented before, one can differentiate Eq. (4) a certain number of times and then
isolate the derivatives of certain variables (system variables) in terms of themselves thereby
obtaining a “closed” or normal form. This calculation was accomplished in paper I and we
reproduce next the result

∇̄aφ = φ̄a + φ∗
a, ∇̄aχ = χ̄a + χ∗

a, (8a)

∇̄bφ
∗
a = −1

p

[
£�ξ (∇̄bEa) + 1

2
(χ̄bEa + χ̄aEb − (χ̄rEr)Πab)

]
, (8b)

∇̄bχ
∗
a = 1

p − n

[
£�ξ (∇̄bWa) + 1

2
(φ̄bWa + φ̄aWb − (φ̄rWr)Pab)

]
, (8c)

∇̄bφ̄c = 1

2 − p

[
£�ξ L0

bc + 2φ̄r∇̄rPbc

]
, (8d)

∇̄bχ̄c = 1

2 − n + p

[
£�ξ L1

bc + 2χ̄r∇̄rΠbc

]
, (8e)

∇̄bξ
a = Ψb

a, (8f)

∇̄bΨc
a = 1

2
(φ̄bP

a
c + φ̄cP

a
b − φ̄aPcb + χ̄bΠ

a
c + χ̄cΠ

a
b − χ̄aΠcb) − ξdR̄a

cdb (8g)

with the definitions
φ∗

a ≡ Πabφ
b, φ̄a ≡ Pabφ

b, χ∗
a ≡ Pabχ

b, χ̄a ≡ Πabχ
b,

L0
bc ≡ 2

[
Pd

rR̄
r
cdb − 1

p
(Pd

cP
r
qR̄

q
rdb + Pd

bP
r
qR̄

q
rdc − Pr

qR̄
q
rbc)

]
+ R̄0

1 − p
Pbc,

R̄0 ≡ Pd
rR̄

r
cdbP

cb, (9)

L1
bc ≡ 2

[
Πd

rR̄
r
cdb − 1

n − p
(Πd

cΠ
r
qR̄

q
rdb + Πd

bΠ
r
qR̄

q
rdc − Πr

qR̄
q
rbc)

]

+ R̄1

1 − n + p
Πbc, R̄1 ≡ Πd

rR̄
r
cdbΠ

cb. (10)
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The variables lying on the left-hand side of (8) are the system variables. Not all these variables
are independent because as shown in paper I they are constrained by the conditions (constraint
equations)

£�ξ Pab = φPab, £�ξ Πab = χΠab, (11a)

£�ξ Ea = −pφ∗
a, £�ξ Wa = −(n − p)χ∗

a. (11b)

In this section we spell out the first integrability conditions of each equation of (8). These are
geometric conditions arising from the compatibility conditions yielded by the commutation of two
covariant derivatives. The commutation rules for these derivatives are given by the Ricci identity

∇̄a∇̄bΞ
a1···ar

b1···bs − ∇̄b∇̄aΞ
a1···ar

b1···bs =
r∑

q=1

R̄aq
tabΞ

a1···aq−1taq+1···ar
b1···bs

−
s∑

q=1

R̄t
bqabΞ

a1···ar
b1···bq−1tbq+1···bs ,

where we must replace the tensor Ξa1···ar
b1···bs by the system variables and apply (8) to work

out the covariant derivatives. Each one of the equations derived in this fashion only involves
system variables and it is called first integrability condition. These integrability conditions can be
further covariantly differentiated yielding integrability conditions of higher degree. The constraint
equations (11) also give rise to integrability conditions when differentiated in the obvious way.

3.1. Eq. (8f)

This is the simplest integrability condition being its expression

∇̄c∇̄bξ
a − ∇̄b∇̄cξ

a = R̄a
rcbξ

r = ∇̄cΨb
a − ∇̄bΨc

a,

which is an identity as is easily checked by replacing the covariant derivatives of Ψa
b.

3.2. Eq. (8g)

The integrability conditions of (8g) are given by

∇̄a∇̄bΨc
d − ∇̄b∇̄aΨc

d = −Ψa
rR̄d

crb + Ψb
rR̄d

cra − ξr∇̄rR̄
d
cab

+ 1
2∇a((φ̄bP

d
c+φ̄cP

d
b − φ̄dPcb + χ̄bΠ

d
c + χ̄cΠ

d
b − χ̄dΠcb))

− 1
2∇b((φ̄aP

d
c+φ̄cP

d
a − φ̄dPca + χ̄aΠ

d
c + χ̄cΠ

d
a − χ̄dΠca)).

We apply now the Ricci identity to the left-hand side of this expression and gather all the terms
containing contractions with the tensor Ψa

b in a single term by means of the identity

£�ξ R̄d
cab = ξr∇̄rR̄

d
cab − Ψr

dR̄r
cab + Ψc

rR̄d
rab + Ψa

rR̄d
crb + Ψb

rR̄d
car,

from which we obtain

£�ξ R̄d
cab = ∇̄[aφ̄b]P

d
c + Pd

[b∇̄a]φ̄c − Pc[b∇̄a]φ̄
d + ∇̄[aχ̄b]Π

d
c

+ Πd
[b∇̄a]χ̄c − Πc[b∇̄a]χ̄

d + φ̄[b∇̄a]P
d
c + φ̄c∇̄[aP

d
b]

− φ̄d∇̄[aPb]c + χ̄[b∇̄a]Π
d
c + χ̄c∇̄[aΠ

d
b] − χ̄d∇̄[aΠb]c. (12)
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The direct substitution of ∇̄aχ̄b, ∇̄aφ̄b by the expressions given by (8d) and (8e), respectively,
yields after lengthy algebra

1

2
£�ξ T d

cab = φ̄r

2 − p
(Pd

[bΛ
r
a]c + Pd

qΥ
rq

[bPa]c) + χ̄r

2 − (n − p)

× (Πd
[bΛ̄

r
a]c + Πd

qῩ
rq

[bPa]c) + φ̄[b∇̄a]P
d
c + φ̄c∇̄[aP

d
b]

+ φ̄d∇̄[bPa]c + χ̄d∇̄[bΠa]c + χ̄[b∇̄a]Π
d
c + χ̄c∇̄[aΠ

d
b], (13)

where by convenience we introduce the tensors

Λd
bc ≡ 2Pdr∇̄rPbc, Λ̄d

bc = 2Πdr∇̄rΠbc, Υ sc
b ≡ 2PsrPcq∇̄rPqb + (2 − p)∇̄bP

sc,

(14)

Ῡ sc
b ≡ 2ΠsrΠcq∇̄rΠqb + (2 − n + p)∇̄bΠ

sc, (15)

and

T d
cab ≡ 2R̄d

cab − 2

2 − p
(Pd

cL
0
[ab] + Pd

[bL
0
a]c + Pc[aL

0
b]qP

qd)

− 2

2 − n + p
(Πd

cL
1
[ab] + Πd

[bL
1
a]c + Πc[aL

1
b]qΠ

qd). (16)

This last tensor will play an important role in the local characterization of bi-conformally flat
pseudo-Riemannian manifolds as will be seen later.

An interesting invariance property of some of the above tensors needed in future calculations
is

£�ξ Λd
bc = 0, £�ξ Λ̄d

bc = 0 (17)

which are easily obtained from (26).

3.3. Eq. (8b) and (8c)

Again the calculations are tedious but straightforward. The covariant derivatives of φ̄a and χ̄a

are calculated through (8d) and (8e) and to commute the Lie derivative and the covariant derivative
when differentiating both equations we use the identity (see [19,15])

∇̄c £�ξ T a1···as
b1···bq− £�ξ ∇̄cT

a1···as
b1···bq

= −
s∑

j=1

(£�ξ γ̄
aj
cr )T ···aj−1raj+1···

b1···bq +
q∑

j=1

(£�ξ γ̄ r
cbj

)T a1···as ···bj−1rbj+1···, (18)

where, as calculated in paper I, the Lie derivative of the bi-conformal connection is

£�ξ γ̄a
bc = 1

2
(φ̄bP

a
c + φ̄cP

a
b − φ̄aPcb + χ̄bΠ

a
c + χ̄cΠ

a
b − χ̄aΠcb).



1608 A.G.-P. Gómez-Lobo / Journal of Geometry and Physics 56 (2006) 1600–1622

Recall that the Lie derivative of a connection is always a tensor even though the connection itself
is not (see e.g. [19]). Putting all this together we get

Ed £�ξ (Πd
rT

r
acb) = χ̄a∇̄[cEb] + χ̄[b∇̄c]Ea − χ̄r∇̄[c(Πb]aEr)

+ (Pr
aφ̄[c + φ̄aP

r
[c − φ̄rPa[c + Πr

aχ̄[c + χ̄aΠ
r
[c − χ̄rΠa[c)∇̄b]Er

+ 1

2 − n + p
χ̄qErῩ

qr
[bΠc]a, (19)

Wd £�ξ (Pd
rT

r
acb) = φ̄a∇̄[cWb] + φ̄[b∇̄c]Wa − φ̄r∇̄[c(Pb]aWr)

+ (Πr
aχ̄[c + χ̄aΠ

r
[c − χ̄rΠa[c + Pr

aφ̄[c + φ̄aP
r
[c − φ̄rPa[c)∇̄b]Wr

+ 1

2 − p
φ̄qWrΥ

qr
[bPc]a. (20)

3.4. Eq. (8a)

The integrability conditions of this equation are easier to handle

0 = ∇̄a∇̄bφ − ∇̄b∇̄aφ = ∇̄aφ̄b − ∇̄bφ̄a + ∇̄aφ
∗
b − ∇̄bφ

∗
a,

0 = ∇̄a∇̄bχ − ∇̄b∇̄aχ = ∇̄aχ̄b − ∇̄bχ̄a + ∇̄aχ
∗
b − ∇̄bχ

∗
a,

from which we readily obtain by means of (8b)–(8e)

£�ξ

(
1

2 − p
L0

[ab] − 1

p
∇̄[aEb]

)
= 0, (21)

£�ξ

(
1

2 − n + p
L1

[ab] − 1

n − p
∇̄[aWb]

)
= 0. (22)

3.5. Eqs. (8d) and (8e)

The integrability conditions yield (Eq. (17) is used along the way)

2 − p

2
φ̄rT

r
ceb = 2 £�ξ

(
∇̄[eL

0
b]c + 1

2 − p
Λd

c[bL
0
e]d

)
+ χ̄[eL

0
b]qΠ

q
c + χ̄cΠ

q
[eL

0
b]q

− χ̄qΠc[eL
0
b]q + 2

2 − p
φ̄r(Λ

d
c[bΛ

r
e]d + (2 − p)∇̄[eΛ

r
b]c), (23)

2 − n + p

2
χ̄rT

r
ceb = 2 £�ξ

(
∇̄[eL

1
b]c + 1

2−n−p
Λ̄d

c[bL
1
e]d

)
+ χ̄[eL

1
b]qP

q
c + φ̄cP

q
[eL

1
b]q

− φ̄qPc[eL
1
b]q + 2

2 − n + p
χ̄r(Λ̄

d
c[bΛ̄

r
e]d + (2 − n + p)∇̄[eΛ̄

r
b]c).

(24)

3.6. Constraint equations

Finally only the first integrability conditions coming up from the constraints (11) are left. These
integrability conditions result from their covariant derivative (we only need to take care of (11a)
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because the differentiation of (11b) results in (8b) and (8c) which are part of the normal form).
Differentiation of these equations with respect to ∇̄ yields after some algebra (apply identity (18))

£�ξ ∇̄cPab = φ∇̄cPab + φ∗
cPab, £�ξ ∇̄cΠab = χ∇̄cΠab + χ∗

cΠab. (25)

For completeness we provide also these equations with the ab indexes raised

£�ξ ∇̄cP
ab = −φ∗

cP
ab − φ∇̄cP

ab, £�ξ ∇̄cΠ
ab = −χ∗

cΠ
ab − χ∇̄cΠ

ab, (26)

and the invariance laws

£�ξ ∇̄cP
a
b = 0, £�ξ ∇̄cΠ

a
b = 0. (27)

These equations close the whole suite of first integrability conditions. In the next section we will
obtain geometric information from these conditions.

4. Complete integrability

Our next task is to find out when the first integrability conditions presented in the previous
section become a set of identities for every choice of the independent variables of the normal
form (8). This happens if certain geometric conditions (complete integrability conditions) are
met. Under such conditions there exists in the neighbourhood of each point a finite-dimensional
Lie algebra of bi-conformal vector fields attaining the greatest dimension N. Thus if we are able
to find pseudo-Riemannian manifolds in which these conditions are satisfied we will have proven
that the bound N is reached at least locally (see [4]). The first problem which we come across to
is that not all the variables appearing in (8) are independent as there are constraints which must
be taken into account. However, some of the variables of (8) are not involved in the constraint
equations (11) and this fact will allow us to find necessary and sufficient geometric conditions for
the whole set of first integrability conditions to become identities. The variables which are not
constrained by (11) are φ̄a and χ̄a so we will separate out in each of the integrability conditions
obtained above all the contributions involving these variables. If we demand then that φ̄a and χ̄a

be arbitrary functions in the neighbourhood of a point we will obtain a number of local geometric
conditions which will lead us to the complete integrability conditions.

We will perform next this procedure step by step (actually we will not need to analyse all the
conditions as some of them will turn into identities if the geometric conditions entailed by others
are imposed). The full calculation is rather cumbersome and only its main excerpts will be shown
so the reader interested in the complete integrability conditions should jump directly to Theorem 9.

4.1. Eq. (13)

This equation can be rewritten as

£�ξ T d
cab = φ̄rM

rd
cab + χ̄rN

rd
cab, (28)

where

Mrd
cab ≡ 2

2 − p
Pr

s(Λ
s
c[aP

d
b] + Υsd

[bPa]c) + 2Pr
[b∇̄a]P

d
c

+ 2Pr
c∇̄[aP

d
b] + 2Pdr∇̄[bPa]c, (29)
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Nrd
cab ≡ 2

2−n+p
Πr

s(Λ̄
s
c[aΠ

d
b] + Ῡ sd

[bΠa]c) + 2Πr
[b∇̄a]Π

d
c

+ 2Πr
c∇̄[aΠ

d
b] + 2Πdr∇̄[bΠa]c. (30)

Under the assumption of complete integrability (28) must be true for every φ̄a, χ̄a so we have

Pr
sM

sd
cab = Mrd

cab = 0, Πr
sN

sd
cab = Nrd

cab = 0. (31)

Let us study these geometric conditions (it is enough to concentrate on the first condition because
the other is dual and it is obtained by the usual replacements). Contracting the indexes d and b in
this equation we get

2

2 − p
[pPrq∇̄qPac − Prq(Pa

s∇̄qPsc + Pc
s∇̄qPsa)] + Psr∇̄sPac = 0. (32)

Multiplying this by Pz
a gives the condition

Pz
sPrq∇̄qPsc = 0, (33)

which put back in (32) yields

Prs∇̄sPac = 0 ⇒ Λr
ac = 0, Υ sc

b = (2 − p)∇̄bP
sc. (34)

Now using this result we contract r and b in the first of (31)

(p − 1)∇̄aP
d
c − Pa

s∇̄sP
d
c − Pc

s∇̄sP
d
a + Pc

s∇̄aP
d
s = 0, (35)

from which we get

Pa
qPc

s∇̄qP
d
s = 0. (36)

Combining this with (35) we readily obtain

∇̄aP
d
c = 0. (37)

Finally multiplying by Pac in the first of (31) gives

Pr
s(−Pa

b∇̄aP
sd + p∇̄bP

sd) − PdrEb = 0. (38)

Multiplying this last equation by Pz
b we obtain

Pa
zP

r
s∇̄aP

sd = 0,

which combined with (38) implies

∇̄bP
rd = 1

p
EbP

rd. (39)

This last condition can be written with the indexes of the projector lowered if we use (37)

∇̄bPcd = − 1

p
EbPcd. (40)

The dual conditions for the projectors Πab, Πab coming from the vanishing of (30) are

∇̄cΠ
ab = 1

n − p
WcΠ

ab, ∇̄cΠ
a
b = 0, ∇̄cΠab = − 1

p
WcΠab. (41)
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Conversely, if Eqs. (37), (39), (40) and (41) are assumed a simple calculation tells us that the tensors
defined by (29) and (30) vanish. In fact all the above geometric conditions can be combined in a
single simpler expression.

Proposition 2. The following assertion is true

Mabc = 1

p
EaPbc − 1

n − p
WaΠbc ⇐⇒ (42)

∇̄aPbc = − 1

p
EaPbc, ∇̄aΠbc = − 1

n − p
WaΠbc. (43)

Proof. To prove this result we need the following formulae relating ∇̄cPab, ∇̄cP
a
b and ∇cPab,

∇cP
a
b.

∇̄aPbc = ∇aPbc − 1

p
EaPbc − 1

2p
(EbPac + EcPab) − 1

2
(PcpMp

ab + PbpMp
ac), (44)

2∇̄aP
b
c = 2∇aP

b
c+PbqPr

cMqra−ΠbqPr
cMqra−Pb

qM
q
ac + 1

n − p
WcΠ

b
a − 1

p
EcP

b
a,

(45)

∇̄aP
bc = ∇aP

bc + 1

p
EaP

bc + 1

2(n − p)
(WcΠb

a + WbΠc
a)−1

2
(Mb

arP
rc + Mc

arP
rb).

(46)

There is a dual set of identities obtained through the replacements Pab ↔ Πab, Ea ↔ Wa and
p ↔ n − p (see paper I for a proof). Now, if conditions (43) are true then expanding ∇̄aPbc by
means of (44) we get

∇bPac = 1

2p
(EaPbc + EcPab) + 1

2
(PcpMp

ba + PapMp
bc), (47)

∇bΠac = 1

2(n − p)
(WaΠbc + WcΠab) − 1

2
(ΠcpMp

ba + ΠapMp
bc). (48)

Substituting these expressions of the covariant derivatives of Pab and Πab in the definition of
Mabc (Eq. (7)) yields

PcpMp
ab = − 1

n − p
WcΠab, ΠcpMp

ab = 1

p
EcPab, (49)

whose addition leads to (42). Conversely, suppose that (42) holds. We may write this equation in
the equivalent form

∇bPac = 1

2p
(EaPbc + EcPab) − 1

2(n − p)
(WaΠbc + WcΠba), (50)

where the relation Mabc = ∇bPac − ∇cPab − ∇aPbc has been again used. Then inserting (50) and
(42) into (44) gives us the condition on ∇̄aPbc at once. The calculation for ∇̄aΠbc is similar using
identity (44) written in terms of Πab. �

Proposition 3. If (42) is true ∇̄cP
a
b = 0.
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Proof. To prove this we use identity (45) and replace Mabc by (42) yielding

∇̄aP
b
c = ∇aP

b
c − 1

2p
(EbPac + EcP

b
a) + 1

2(n − p)
(WcΠ

b
a + WbΠac), (51)

which vanishes by (50). �

Remark 4. Note that in view of the above result condition (42) entails

∇̄cP
ab = 1

p
EcP

ab, ∇̄cΠ
ab = 1

n − p
WcΠ

ab. (52)

Therefore all the conditions coming from (29) and (30) are summarized by (42). This last equation
can be written in the equivalent form Tabc = 0, where

Tabc ≡ Mabc − 1

p
EaPbc + 1

n − p
WaΠbc.

As explained in paper I the tensor Tabc plays a key role in the geometric characterization of con-
formally separable pseudo-Riemannian manifolds. There we proved that a pseudo-Riemannian
manifold is locally conformally separable with the tensors Pab and Πab as the leaf metrics (see
Definition 10) if and only if Tabc = 0 which means that the complete integrability conditions
obtained so far bear a clear geometrical meaning.

Some of the first integrability conditions achieve a great simplification if Tabc vanishes. For
instance (25)–(27) become zero identically under this condition as is obvious from Propositions
2 and 3 so we do not need to care about these integrability conditions any more. Eq. (28) acquires
the invariance law

£�ξ T d
cab = 0. (53)

Other simplifications will be shown in the forthcoming analysis.

4.2. Eqs. (23) and (24)

If Tabc = 0 then Λa
bc = 0, Λ̄a

bc = 0 so these equations take the form

− φ̄qP
q
rT

r
ceb = 2 £�ξ ∇̄[eL

0
b]c + χ̄rE

r
ceb, (54)

− χ̄qΠ
q
rT

r
ceb = 2 £�ξ ∇̄[eL

1
b]c + φ̄rF

r
ceb, (55)

where

Er
ceb = 2

2 − p
(Πq

cΠ
r
[eL

0
b]q + Πr

cΠ
q

[eL
0
b]q − ΠrqΠc[eL

0
b]q), (56)

Fr
ceb = 2

2 − n + p
(Pq

cP
r
[eL

1
b]q + Pr

cP
q

[eL
1
b]q − PrqPc[eL

1
b]q). (57)

If (54) and (55) are to be true for every value of φ̄q and χ̄q we find the conditions of complete
integrability

Pq
rT

r
ceb = 0, Πq

rT
r
ceb = 0 =⇒ T q

ceb = 0,

so Eq. (53) is trivially fulfilled. To proceed further with the calculations we need a lemma.
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Lemma 5. If ∇̄aP
b
c = 0 then

L0
bqΠ

q
c = 0, L1

bqP
q
c = 0.

Proof. These properties are proven through the Ricci identity applied to the tensors Pb
c, Πb

c

which take a remarkably simple form under our conditions (we only perform the calculations for
the tensor Pa

b)

0 = ∇̄e∇̄aP
b
c − ∇̄a∇̄eP

b
c = R̄b

qeaP
q
c − R̄q

ceaP
b
q, (58)

whence

L0
bqΠ

q
c = 2Pd

rR̄
r
qdbΠ

q
c + 2

p
(Πd

bP
r
qR̄

q
rdsΠ

s
c).

The first term of this expression is zero according to (58) and the second one can be transformed
by means of the first Bianchi identity into

Πd
bΠ

s
cP

r
qR̄

q
rds = −Πd

bΠ
s
c(Pr

qR̄
q
dsr + Pr

qR̄
q
srd)

= −Πd
bΠ

s
c(Pq

dR̄
r
qsr + Pq

sR̄
r
qrd),

which also vanishes. �
Therefore conditions (54) and (55) are further simplified to

£�ξ ∇̄[eL
0
b]c = 0, £�ξ ∇̄[eL

1
b]c = 0. (59)

It is our next aim to show that indeed these two equations are identities if T d
cab = 0.

Lemma 6. If p �= 3, n − p �= 3 and Tabc = 0 then

T d
cab = 0 =⇒ ∇̄[eL

0
b]c = 0, ∇̄[eL

1
b]c = 0.

Proof. To prove this we start from the identity

(2 − p)[∇̄e(Pe
qT

q
cab) + ∇̄b(Pd

qT
q
cda) − ∇̄a(Pd

qT
q
cdb)]

= 2Pe
c∇̄eL

0
[ba] − 2Pd

c∇̄[b|L0
d|a] + 2p∇̄[bL

0
a]c + 2Pd

[b∇̄a]L
0
dc − 2Pe

[b|∇̄eL
0
|a]c

+ 2Pqe∇̄eL
0
[a|qP|b]c + 2PqdPc[a∇̄b]L

0
dq, (60)

which is obtained from Eq. (16) and the second Bianchi identity for the tensor R̄a
bcd if the

condition Tabc = 0 holds. By assumption the left-hand side of this identity vanishes so we only
need to study the right-hand side equated to zero. Multiplying such equation by Pca we get

2(1 − p)Pae∇̄eL
0
ba − 2(1 − p)Pda∇̄bL

0
da + 2Pd

bP
ac∇̄aL

0
dc − 2Pe

bP
ac∇̄eL

0
ac = 0, (61)

and a further multiplication by Pz
b yields

Pz
rPqe∇̄eL

0
rq = Pz

rPqd∇̄rPqd.

This last property implies that the last two terms of (61) are zero from which we conclude that

Pqe∇̄eL
0
rq = Pqd∇̄rPqd,

and hence (60) becomes

2Pe
c∇̄eL

0
[ba] − 2Pd

c∇̄[b|L0
d|a] + 2p∇̄[bL

0
a]c + 2Pd

[b∇̄a]L
0
dc = 0. (62)
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If we multiply this last equation by Pz
aPt

b we obtain

Sctz − Stcz + Szct − Sczt + (p − 2)(Stzc − Sztc) = 0, (63)

where

Sztc ≡ Pz
rPt

s∇̄rL
0
sc.

Permuting indexes in (63) we get the equations

Sctz − Stcz + Szct − Sczt + (p − 2)(Stzc − Sztc) = 0,

Sztc − Stzc + Sczt − Szct + (p − 2)(Stcz − Sctz) = 0,

Sctz − Stcz + Stzc − Sztc + (p − 2)(Szct − Sczt) = 0 (64)

Setting the variables x = Sctz − Stcz, y = Szct − Sczt , w = Stzc − Sztc we deduce that previous
equations form a homogeneous system in these variables whose matrix is⎛

⎜⎝
1 1 p − 2

2 − p −1 −1

1 p − 2 1

⎞
⎟⎠ ⇒

∣∣∣∣∣∣∣
1 1 p − 2

2 − p −1 −1

1 p − 2 1

∣∣∣∣∣∣∣
= −p(p − 3)2.

So unless p = 3 (p = 0 makes no sense in the current context) we conclude that x = y = w = 0
and hence

P[a
rPb]

s∇̄rL
0
sc = 0.

Application of this in the expression resulting of multiplying (62) by Pr
b leads to

Pd
c∇̄aL

0
db − Pe

c∇̄eL
0
ab + (p − 1)(Pr

b∇̄rL
0
ac − Pr

b∇̄aL
0
rc) = 0.

By setting Qacb ≡ Pd
c∇̄aL

0
db − Pe

c∇̄eL
0
ab we can rewrite this as

Qacb − (p − 1)Qabc = 0, ⇒ Qabc − (p − 1)Qacb = 0,

which entails Qabc = 0 (recall that p �= 1 by definition of L0
ab). This last property applied to (62)

yields

∇̄[bL
0
a]c = 0,

as desired. The result for L1
ab is proven in a similar way. �

4.3. Eqs. (21) and (22)

The analysis of these conditions is performed by means of the following result.

Proposition 7. If Tabc = 0 then

1

2 − p
(L0

ab − L0
ba) − 1

p
(∇̄aEb − ∇̄bEa) = 0,

1

2 − n + p
(L1

ab − L1
ba) − 1

n − p
(∇̄aWb − ∇̄bWa) = 0.
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Proof. We only carry on the proof for the first identity as the calculations are similar for the
second one. We start from the identity

Ea = −Pbc∇̄aPbc,

which is easily obtained from (44). Using this we may write

∇̄aEb − ∇̄bEa = −Pqr(∇̄a∇̄bPqr − ∇̄b∇̄aPqr) − ∇̄aP
qr∇̄bPqr + ∇̄bP

qr∇̄aPqr. (65)

The expression in brackets can be transformed by the Ricci identity into 2Pq
rR̄

r
qab. If we impose

now the condition Tabc = 0, then combination of Proposition 2 and Remark 4 entails

∇̄aP
qr∇̄bPqr = − 1

p
EaEb = ∇̄bP

qr∇̄aPqr.

Therefore after these manipulations equation (65) yields

∇̄aEb − ∇̄bEa = 2Pq
rR̄

r
qab. (66)

On the other hand from (9) and applying the first Bianchi identity it is easy to obtain

L0
ab − L0

ba = 2(2 − p)

p
Pr

qR̄
q
rab. (67)

Combination of (66) and (67) leads to the desired result. �

4.4. Eqs. (19) and (20)

Proposition 8. If T d
cab = 0 and Tabc = 0 then (19) and (20) are identities.

Proof. The left-hand side of both equations vanishes trivially if T d
cab = 0 so we just need to

show that the right-hand side vanishes as well. The characterization of the condition Tabc = 0 in
terms of the covariant derivatives of the projectors (Eqs. (43) and (52)) entails

Υsc
b = 2 − p

p
EbP

sc, Ῡ sc
b = 2 − n + p

n − p
WbΠ

sc,

which means that the terms of (19) and (20) containing these tensors are zero. The property
∇̄cP

a
b = ∇̄cΠ

a
b = 0 can be used now to get rid of some terms and simplify others on these

couple of equations getting

0 = χ̄a∇̄[cEb] + χ̄[b∇̄c]Ea + χ̄a∇̄[bEc] + χ̄[c∇̄b]Ea,

0 = φ̄a∇̄[cWb] + φ̄[b∇̄c]Wa + φ̄a∇̄[bWc] + φ̄[c∇̄b]Wa,

which are obviously identities. �

4.5. Constraints

If Tabc = 0 then using (43) and Proposition 3 Eq. (25) becomes

− 1

p
£�ξ (EcPab) = −φ

p
EcPab + φ∗

cPab, − 1

n − p
£�ξ (WcΠab) = −χ

n − p
WcΠab+χ∗

cΠab,

which is easily seen to be an identity if we apply (11b).
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All our calculations are thus summarized in the next result, which is one of the most important
of this paper.

Theorem 9 (Complete integrability conditions). The first integrability conditions calculated for
bi-conformal vector fields are identically fulfilled in the neighbourhood of a point if and only if
in such neighbourhood

Tabc = 0, T d
cab = 0,

whenever Pa
a, Πa

a �= 3.

5. Geometric characterization of bi-conformally flat pseudo-Riemannian manifolds

Once we have found the mathematical characterization of the spaces admitting a maximum
number of bi-conformal vector fields we must next settle if there is actually any space whose
metric tensor complies with the conditions stated in Theorem 9 or on the contrary there are no
pseudo-Riemannian manifolds fulfilling such requirement. Indeed, we will find that each geomet-
ric condition has a separate meaning related to the geometric characterization of certain separable
pseudo-Riemannian manifolds. Hence the tensors Tabc and T a

bcd bear a geometric interest on their
own regardless of the existence of bi-conformal vector fields on the pseudo-Riemannian manifold
where they are defined. Before addressing this issue we need some preliminary definitions.

Definition 10. The pseudo-Riemannian manifold (V, gab) is said to be conformally separable at
the point q ∈ V if there exists a local coordinate chart x ≡ {x1, . . . , xn} based at q in which the
metric tensor takes the form

gab(x) =

⎧⎪⎨
⎪⎩

Ξ1(x)Gαβ(xγ ), 1 ≤ α, β, γ ≤ p,

Ξ2(x)GAB(xC), p + 1 ≤ A, B, C ≤ n,

0, otherwise.

(68)

where Ξ1, Ξ2 are C2 functions on the open set defining the coordinate chart. (V, gab) is conformally
separable if it is so at every point q ∈ V . Any of the tensors Ξ1Gαβ, Ξ2GAB shall be called leaf
metric.

In paper I we proved that a pseudo-Riemannian manifold is conformally separable at a point q if
and only if the tensor Tabc is zero in a neighbourhood of q. In this case the orthogonal projectors
Pab and Πab used to construct Tabc generate integrable distributions D and D′ (see considerations
coming after Definition 1) and hence the set of integral manifolds of each distribution is a foliation
in a neighbourhood of q. These foliations allow us to construct a local coordinate system around
p in which the metric tensor takes the form (68) and the only non-vanishing components of the
projectors are

Pαβ = Ξ1(x)Gαβ(xγ ), ΠAB = Ξ2(x)GAB(xC),

from which we conclude that Pab and Πab are just the leaf metrics. The advantage of the char-
acterization of conformally separable pseudo-Riemannian manifolds given in paper I is clear as
it is invariant and coordinate-free. Therefore we conclude that any pseudo-Riemannian manifold
fulfilling the conditions of Theorem 9 must be conformally separable.

In what is to follow we will work with conformally separable pseudo-Riemannian manifolds
at a point and thus we will identify Pab, Πab and the leaf metrics.
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Bi-conformally flat spaces are a particular and interesting case of conformally separable
pseudo-Riemannian manifolds defined by the requirement that the metrics Gαβ, GAB be flat (so
the leaf metrics are conformally flat). To our knowledge the study of bi-conformally flat spaces
has never been tackled in the literature as opposed to many other conformally separable pseudo-
Riemannian manifolds. Next, we fill up this gap proving a local characterization of bi-conformally
flat pseudo-Riemannian manifolds along the same lines as in the conformally separable case.

Theorem 11. A conformally separable pseudo-Riemannian manifold at a point q with leaf
metrics of rank greater than 3 is bi-conformally flat at the same point if and only if the tensor
T a

bcd constructed from its leaf metrics is identically zero in a neighbourhood of q.

Proof. We choose the same coordinates and notation for our conformally separable space as in
Definition 10 (from now on we will label tensor indexes with lowercase Greek and uppercase
Latin letters according to the leaf of the separation they refer to). In the local coordinates of (68)
the non-vanishing Christoffel symbols are

Γ α
βγ = 1

2Ξ1
Gαρ(∂β(Ξ1Gαρ) + ∂γ (Ξ1Gρβ) − ∂ρ(Ξ1Gβγ )),

Γ A
BC = 1

2Ξ1
GAD(∂B(Ξ1GCD) + ∂C(Ξ1GDB) − ∂D(Ξ1GBC)),

Γ α
βA = 1

2Ξ1
δα

β∂AΞ1, Γ A
Bα = 1

2Ξ2
δA

B∂αΞ2,

where

GαβGβρ = δα
ρ, GACGCB = δA

B,

and the tensors Gαβ and GAB are used to raise Greek and Latin indexes, respectively. The com-
ponents of Mabc, Ea, Wa are (henceforth, the components not shown in an explicit tensor repre-
sentation are understood to be zero)

MαAB = ∂α(Ξ2GAB), MAαβ = −∂A(Ξ1Gαβ), EA = −∂A log |det(Ξ1Gαβ)|,
Wα = −∂α log |det(Ξ2GAB)|. (69)

Therefore we get for the components of the bi-conformal connection

Γ̄ α
βφ = 1

2Ξ1
(δα

β∂φΞ1 + δα
φ∂βΞ1 − GαρGβφ∂ρΞ1) + Γ α

βφ(G),

Γ̄ A
BC = 1

2Ξ2
(δA

B∂CΞ2 + δA
C∂BΞ2 − GARGBC∂RΞ2) + Γ A

BC(G),

Γ̄ α
βC = Γ̄ A

Bφ = 0, (70)

where Γ α
βφ(G) and Γ A

BC(G) are the Christoffel symbols of the metrics Gαβ and GAB, respec-
tively. Using this we deduce after some algebra

R̄α
βφγ = Rα

βφγ, R̄A
BCD = RA

BCD, R̄α
βFφ = ∂F Γ̄ α

φβ, R̄A
BFφ = −∂φΓ̄ A

FB,

L0
αβ = 2Rαβ + Rγ

γ

1 − p
gαβ, L1

AB = 2RAB + RC
C

1 − n + p
gAB, L0

αA = L1
Aα = 0,

L0
Aα = 2(2 − p)

p
∂AΓ̄ ρ

αρ, L1
αA = 2(2 − n + p)

n − p
∂αΓ̄ R

AR, (71)
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where Rαβ, RAB, Rγ
γ and RC

C are the Ricci tensors and Ricci scalars of Rα
βφγ and RA

BCD,
respectively (these curvature tensors are calculated from the leaf metrics and not from their
conformal counterparts Gαβ and GAB). From this and Eqs. (16) and (70) we get that the only
non-vanishing components of the tensor T a

bcd are

Tα
βφγ = 2Cα

βφγ, TA
BCD = 2CA

BCD, (72)

being Cα
βφγ and CA

BCD the Weyl tensors constructed from each leaf metric through the relations

Cα
βφγ = Rα

βφγ + 1

2 − p
(gβ[γL0

φ]ρg
ρα + δα

[φL0
γ]β),

CA
BCD = RA

BCD + 1

2 − n + p
(gB[DL1

C]EgEA + δA
[CL1

D]B).

Hence Tα
βφγ and TA

BCD are both zero if and only if the leaf metrics are both conformally flat
which proves the theorem. �

Remark 12. Note that the tensors R̄α
αFφ and R̄A

AFφ (no summation) do not vanish in general
which means that the bi-conformal connection does not stem from a metric tensor in this case.

From the calculations performed above it is clear that Theorem 11 can be generalized to confor-
mally separable spaces in which only one of the leaf metrics is conformally flat. To that end, we
define the tensor

T (P)abcd ≡ Pa
rP

q
bP

s
cP

t
dT

r
qst . (73)

Theorem 13. Under the assumptions of Theorem 11 a leaf metric is conformally flat if and only
if the tensor T (P)abcd calculated from the leaf metric Pab is equal to zero.

Proof. From the proof of Theorem 11 and (73) we deduce that for a conformally separable
pseudo-Riemannian manifold the only non-vanishing components of T (P)abcd are

T (P)αβγφ = Tα
βγφ = 2Cα

βγφ,

so the vanishing of T (P)abcd implies that the Weyl tensor calculated from the corresponding leaf
metric is zero as well. �

In the case of any of the leaf metrics being of rank 3 it is clear from the above that the correspond-
ing tensor T (P)abcd will be zero as the Weyl tensor of any three-dimensional pseudo-Riemannian
metric vanishes identically. Hence the results presented so far cannot be used to characterize con-
formally separable pseudo-Riemannian manifolds with conformally flat leaf metrics. This lacking
is remedied in the next theorem.

Theorem 14. A conformally separable pseudo-Riemannian manifold at a point q has a confor-
mally flat leaf metric of rank 3 if and only if the condition

∇̄[aL
0
b]c = 0, (74)

holds in a neighbourhood of q where L0
ab is calculated from the leaf metric Pab by means of (9).

Proof. To show this we will rely on the notation and calculations performed in the proof of
Theorem 11. If the manifold is conformally separable, then the components of the tensor ∇̄aL

0
bc
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are

∇̄αL0
βε = ∇αL0

βε, ∇̄αL0
Bε = 2(2 − p)

p
(∂2

αBΓ̄ ρ
ερ − Γ̄ δ

αε∂BΓ̄
ρ
δρ), ∇̄AL0

βε = ∂AL0
βε,

∇̄AL0
Bε = ∂AL0

Bε − Γ̄ C
ABL0

Cε,

where ∇α is the covariant derivative compatible with the metric Ξ1(x)Gαβ. Trivially

∇̄[αL0
β]ε = ∇[αL0

β]ε, (75)

here the tensor ∇[αL0
β]ε is the Schouten tensor of the three-metric Ξ1(x)Gαβ which vanish if and

only if Gαβ is flat. Therefore to finish the proof of this theorem we must show that all the remaining
components of ∇̄[aL

0
b]c are zero. These are

∇̄[AL0
B]ε = 2(2 − p)

p
∂2

[AB]Γ̄
ρ
ερ,

2∇̄[αL0
B]ε = 2(2 − p)

p
(∂2

αBΓ̄ ρ
ερ − Γ̄ δ

αε∂BΓ̄
ρ
δρ) − ∂BL0

αε.

Clearly the first expression is zero and the second one is worked out by replacing the connection
coefficients by their expressions given in (70) and using the identity

L0
αβ = L0

αβ(G) + (2 − p)(2σαβ + Gαβ(∂σ)2), σ = 1

2
log |Ξ1(x)|,

σαβ = ∇̂α∇̂βσ − ∂ασ∂βσ, (∂σ)2 = Gαβ∂ασ∂βσ,

where L0
αβ(G) is calculated using the curvature tensors computed from Gαβ and ∇̂ is the

connection compatible with this metric. The sought result comes after some simple algebraic
manipulations. �

All in all the geometric conditions proven in Theorems 11, 13 and 14 provide a set of equations
which can be used to determine if a given pseudo-Riemannian manifold (V, gab) is conformally
separable at a point with respect to a pair of leaf metrics Pab, Πab and to decide if any of the leaf
metrics is conformally flat. Note that all our characterizations are coordinate-free and in fact they
can be used as intrinsic definitions of conformal separability and bi-conformal flatness at a point
as opposed to Definition (10) which is coordinate-dependent. What is more one can study specific
examples of pseudo-Riemannian manifolds in which tensors Pab and Πab with the properties (5)
are defined and check if the aforementioned conditions are fulfilled which is far more easier than
trying to prove the existence of the coordinate system of (68) (see Example 16 for a practical
application).

5.1. Bi-conformally flat spaces as spaces with a maximal number of bi-conformal vector
fields

From the above it is clear that the conditions imposed by Theorem 9 are satisfied by a non-
trivial set of pseudo-Riemannian manifolds. Thus we deduce that a bi-conformally flat pseudo-
Riemannian manifold can be also characterized by the existence of a maximum number of bi-
conformal vector fields. On the other hand it is straightforward to check (Proposition 6.1 of [3])
that for these spaces any conformal Killing vector of the leaf metrics is a bi-conformal vector field
of the metric gab. As the number of conformal Killing vectors for each leaf metric is the biggest
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possible as well we get at once that for a bi-conformally flat space the total number of linearly
independent bi-conformal vector fields is

1
2 (p + 1)(p + 2) + 1

2 (n − p + 1)(n − p + 2), p, n − p �= 2,

which is the upper bound N for the dimension of any finite-dimensional Lie algebra of bi-conformal
vector fields. Summing up we obtain the following result.

Theorem 15. A pseudo-Riemannian manifold possesses N linearly independent bi-conformal
vector fields (Pa

a > 3, Πa
a > n − 3) if and only if it is bi-conformally flat.

Bi-conformally flat spaces in which any of the leaf metrics has rank 3 also admit N linearly
independent bi-conformal vector fields (in fact the complete integrability conditions are satisfied
for these spaces as a result of Theorem 14). However, we do not know yet if there are spaces
with N linearly independent bi-conformal vector fields with either of the projectors Pab or Πab

projecting on a three-dimensional vector space other than bi-conformally flat spaces. This is so
because in such case the complete integrability conditions (59) may in principle be fulfilled by
other conformally separable spaces not necessarily with conformally flat leaf metrics. The true
extent of this assertion and the complete characterization of spaces with N linearly independent
bi-conformal vector fields under these circumstances will be placed elsewhere.

6. Examples

We present here examples illustrating how our techniques work in practical cases. All the
algebraic calculations can be performed with any of the computer algebra systems available
today (the system used here was GRTensorII [14]).

Example 16. Consider the four-dimensional pseudo-Riemannian metric given by

ds2 = Ψ2 sin2 θ(dt + dφ)2 − α dt2 + B2(dr2 + r2 dθ2),

where −∞ < t < ∞, 0 < r < ∞, 0 < θ < π, 0 < φ < 2π and

Ψ = Ψ (r, θ), Φ = Φ(r, θ), B = B(r, θ), α = α(r, θ).

Let us prove that this metric is conformally separable with respect to the foliation defined by the
condition t = const. To that end we need to find out the orthogonal projector Pab whose associated
distribution D generates the above foliation. The distribution D is clearly defined by the set of
vector fields {∂/∂r, ∂/∂θ, ∂/∂φ} which are already orthogonal and hence Eq. (6) tells us how to
construct Pab and Πab. The only non-vanishing components of Pab are

Ptt = Ψ2 sin2 θ, Prr = B2, Pθθ = r2B2,

Pφφ = Ψ2 sin2 θ, Ptφ = Ψ2 sin2 θ,

and from this we can easily check that the tensor Tabc is zero identically. The tensor ∇̄[aL
0
b]c is not

zero unless further restrictions are imposed. For instance if we set Ψ2 = r2(1 + r2), B2 = 1 + r2,
α = −r2 the metric tensor becomes

ds2 = r2(1 + (1 + r2) sin2 θ) dt2 + 2r2(1 + r2) sin2 θ dt dφ

+ (1 + r2)(dr2 + r2 dθ2 + r2 sin2 θ dφ2), (76)

and a calculation shows that condition (74) holds. Hence according to Theorem 14 the metric is
locally bi-conformally flat. Note that this is by no means evident in the coordinate system of (76)
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and so our method has a clear advantage. In this case we can go even further and find the explicit
coordinates bringing (76) into the canonical form (68) which is

ds2 = (x2 + y2 + z2) dT 2 + (1 + x2 + y2 + z2)(dx2 + dy2 + dz2),

being the coordinate change

T = t, x = r sin θ cos(t + φ), y = r sin θ sin(t + φ), z = r cos θ.

Example 17. In the foregoing results we have only concentrated on conformally separa-
ble pseudo-Riemannian manifolds but nothing was said about manifolds foliated by confor-
mally flat hypersurfaces and not conformally separable. To illustrate this case let us con-
sider the four-dimensional pseudo-Riemannian manifold V covered by a single coordinate chart
x = {x1, x2, x3, x4} and whose metric tensor is

ds2 = Φ(x)[(dx1)2 + (dx2)2 + (dx3)2] + 2
3∑

i=1

βi(x) dxi dx4 + Ψ (x)(dx4)2, (77)

where Φ(x), βi(x), Ψ (x) are functions at least C3 in the whole manifold. Clearly the above line
element represents the most general four-dimensional pseudo-Riemannian manifold admitting a
local foliation4 by three-dimensional conformally flat Riemannian hypersurfaces (given by the
conditionx4 = const). Now if we consider the integrable distribution associated to this foliation we
may define an orthogonal projector Pab by means of (6). To achieve this, we take the vector fields
{∂/∂x1, ∂/∂x2, ∂/∂x3} which span the aforementioned distribution and construct an orthonormal
set out of them (they are already orthogonal so it is enough with normalising). Applying (6) we
easily get

P11 = P22 = P33 = Φ(x), Pi4 = βi(x), i = 1, 2, 3, P44 =
3∑

i=1

β2
i (x)

Φ(x)
.

Using this we can check condition (74) using the projector Pab to calculate L0
ab and see what is

obtained. The result is that the tensor ∇̄[aL
0
b]c does not vanish in this case although a calculation

shows the important property

Pr
aP

s
bP

q
c∇̄[rL

0
s]q = 0. (78)

Theorem 18. A necessary condition that a four-dimensional pseudo-Riemannian manifold can
be foliated locally by conformally flat Riemannian hypersurfaces is Eq. (78).

This result suggests that it may well be possible to generalize the conditions of Theorem 14
to pseudo-Riemannian manifolds of arbitrary dimension which are not conformally separable
replacing these conditions by (78). In fact this example can be generalized if we consider pseudo-
Riemannian manifolds of higher dimension locally foliated by conformally flat hypersurfaces of
dimension arbitrary and not necessarily Riemannian. The condition which must be checked in
this case is T (P)abcd = 0 being this condition found to be true in all the examples tried. Therefore
it seems that a simple modification of the conditions of Theorems 13 and 14 holds even though
the pseudo-Riemannian manifold is not conformally separable. The true extent of this assertion
is under current research.

4 By local we mean a foliation defined in a neighbourhood of a point which is covered by a coordinate chart.
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